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EVALUATION OF BLOCK ADJUSTMENT RESULTS

Summary

Statistical tools can serve as an aid for computer assisted evaluation of
block adjustment results. This concerns gross errors, systematic errors and
errors in the a priori weights. The paper shows how far a computer program
could be able (1) to detect, compensate, or eliminate those errors, (2) to
give information about non detectable errors and their influence on the
result, i. e. the coordinates. This can serve as an objective measure for
the reliability of the blockadjustment.

s Introduction

1:1 The evaluation of block adjustment results aims at the acceptability
of the determined coordinates. The result is acceptable, if the data and
the block geometry are checked by adequate tests. This concerns on the

one side the detection of gross errors and the perception of systematic
errors. On the other side one needs information about the precision and the
reliability of the coordinates.

In practice this evaluation, which usually is made by human inspection (by
checking the residuals, examining the ''network diagram' etc.), is very com-
bersome, for there is often a great amount of data. This is why computer
assistance is wanted. The paper is supposed to show how far this is possib-
le by using statistical tools.

1.2  The underlying theory is essentially the reliability theory by Baarda
(1967/8/76) .An extension to tests on several gross errors or parameters ,
which is urgently necessary in photogrammetry, is subject of the paper. It
forms a link to the theory for general linear hypotheses, known from sta-
tisti.. (cf. e. g. Searle, 1971).

The theory is based on the following idea: The adjustment is founded upon
the assumption (in statistical terms the nullhypothesis Hg) that there are
only random errors. Other errors expected, gross or systematic, are formu-
lated in an alternative hypothesis Hy. An optimal test decides between Hg,
and Hy. The sensitivity of the test leads to lower bounds for gross or
systematic errors, which can just be detected by the test with a preset
probability. The reliability of the result can be described by the influ-
ence of non detectable errors on the coordinates.

13 Gross and systematic errors in this context are both supposed to be
errors in the functional model only. It allows a joint treatment of both
error types. This approach, though customary, obviously can not be taken
for granted for two reasons. There is no clear distinction between gross
and systematic errors; local systematic errors and gross errors can have
the same effect. Also the assignment of the errors to the functional or to
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the stochastical model is a matter of opinion to a certain extent, as the
true error sources are not known usually. This is confirmed by the fact,
that in a wide range the refinement of the functional model can be substitu-
ted by a refinement of the stochastical model and vice versa, e. g. by ta-
king into account the correlation between the observed image coordinates
(Schilcher, 1980) or by changing the weights of bad observations instead of
introducing additional parameters or eliminating the erroneous observations.

Fortunately experiments show that systematic errors are rather constant, at
least a great amount of the error budget can be absorbed by additional para-
meters via selfcalibration, i. e. by extending the functional model. Also a
great percentage of the gross errors would either occur once more, if the
measurement was repeated, or at least would be in the same magnitude, if
the coordinate e. g. was measured erroneously a second time. |t reveals,
that gross errors can be treated as locally confined systematic errors, i.
e. errors in the functionalmodel. Generally gross errors also do not influ-
ence the precision of the observed values, at least not more, than the
weights do vary because of the always very much simplified stochastical
model .

1.4 The theory for treating the stochastical model is developed not near-
ly so far. Only estimating weights or correlations is possible. One can
obtain information about the variances of the estimated values. A statis-
tical test is not available as the probability distribution of the esti-
mated weights or correlations is not known. This drawback of evaluating
block adjustment results is not too considerable from a practical point of
view, as pure economical reasons prohibit an extension of the stochastical
model which is pushed too far. Therefore the paper only shows the possibi-
lity of estimating weights of groups of observations or of weights, which
depend on given parameters. This seems to be necessary and practicable, as
the inference drawn from gross error tests highly depend on the chosen
weights. The additional effort is negligible.

2. The mathematical model and its errors

2.1 The mathematical model

Let us consider the linear (or linearized) functional model
u

E(1)=1+e=2ai§<i=A§=BE+cE (1)
1

with the n observations 1. forming the vector I, the given design matrix A
with the columns a; and the corresponding u unknowns x; forming the vector
X. x may be split into the vectors t and k for the ut unknown nuisance
parameters (such as scale, orientation, possibly projection centres) and
the u | unknown coordinates resp., with the corresponding partition of 4 =
(B c). The model generally does not fit to the observed values. The vector
e describes the model errors.

The stochastical model has the same structure. The covariance or dispersion
matrix of the observations is

P
LR .2
D(1) = o o = % QJ Go,j’ (2)

. " ; : ; - ; i y
in which 0 is the given weight coefficient matrix and 65 the unknown vari-
ance factor. Similarily to the expectation E(1) the variance covariance
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2
matrix |sqspl|t into additive components Qj 0o, with given 0 and unknown
factors o§ e

The extension of the stochastical model needs an explanation. Eq.(2) allows
to estimate e. g. the ratio between the weights of different groups of ob-
servations. In the case of two groups, e. g. photogrammetric and geodetic

observations, one chooses 01 = diag(Qpp, 0) and 90, = diag(o, 0 g)' A second
example is the radial component of the variance of image coordinates, which

might depend on_the field angle a, between ray and optical axis: 6%1 =32 +
62 Z/COS“ aj. a represents the standard deviation of the measuring process
and b is the standard deviation of the ray, i. e. of a. c is the focal

length. In this case one will choose Q1 = al 1, Q9 = diag(b2 c2/cos ai).
a and b are approximate values, the estimators 85,1 and 8o,2 are factors
for a and b to get better approximations.

The estimation of the unknown parameters is based on the assumption, i. e.
the null hypothesis Hg
2

2 ~ :

E(EIHO) = 0; E(Go,leo) = oo,j’ =1, ngPs (3)

In order to set up tests one has to specify the expected model errors, i.e.
formulate one (or several) alternative hypothesis H;. We perform this sepa-
rately for the functional and the stochastical model.

2 52 Errors in the functional model

The expected errors in the functional model are denoted by Ve. By analogy
to eq.(1) they are assumed to depend linearily on additional parameters Vs.
The alternative hypothesis then appears in the form

E(e[H])) = E(e[H]) + Ve; Ve =u7Ts # o. (4)

It covers systematic errors and gross errors, if the matrix H is chosen
properly. The difference is revealed by the structure of H: Systematic
errors influence all observations, this leads to a (rather) full matrix H,
while in the case of gross errors H is sparse.

If we assume an error in point transfer we have to deal with two gross
errors, Vs, and Vs,, resp.. They influence six observations, i. e. the coor-
dinates of the points in three consecutive pictures. In this case H has the
form 8" = (000 v600T 5000 50 00 0rI 200 s w5100 T9s0s s « s#0)» 11 which the unit
matrices are placed at the coordinates of the three points concerned.

2.3 Errors in the stochastical model

The description of the expected errors in the stochastical model, e. g.
errors in the a priori weights, is simpler than eq. (4)

2 M) =€ JH) - Tr.; ?Ej;éo. . (5)

E(c” .]
o,j!"a 0,jo j

as the factors Vtj are not specified in detail. Similarly to the design
matrix A the structure of the matrices Q; is fixed and can not be subject
of alternative hypotheses. Otherwise one Aas to change the model eq.(1) and

(2).
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3. Estimation of parameters

The estimation of the unknowns x; and 02 s s accompllshed by two steps.
According to the_theory of least squares the estimators x, t, k and ¢

for x, £, k and € resp are linear functions of the observatlons The esti-
mators 83 ¢ for G2 . are quadratic functions of the observations. They on-
ly depend 81 the iaiduals v = B.

3.1 Estimators in the functional model

The practical procedure takes into account the different structure of H
for systematic and gross errors, only for operational reasons.

If systematic errors are expected the model eq.(1) is therefore extended
to ‘

~

E(1) =2a%+HS=Bt+Cck+HS (6)

The alternative Hy eq.(4) is then equivalent to s =o (i. e. Vs = 5). We
use the estimated parameters s with their weight coefficient matrix

0:;= (' P (0-2 (a o-la)yla)yepmw)™ , p=o! (7)

for the testing procedure.

Obviously this treatment is not possible for gross errors as one does not
know which observations are erroneous. We test the residuals v with their
weight coefficient matrix

0, =0-2 @ o ta)ylar. (8)
for error detection.

Note that Qg3 (#' P Qyy P H)™, in which Dz is the result of the exten-
ded model eq. (6) while oyy is the result of the original model eq.(1). We
will not refine the notation to designate this difference but use it
throughout this paper. We will therefore not treat systematic and gross
errors simultaneously but parallel. The joint evaluation of both error
types is discussed in ch. 7.

3.2 Estimating in the stochastical model

There are several algorithms for estimating the variance factors 6% j
(Searle, 1971, Grafarend, 1978, Koch, 1978, Fdrstner, 1979). The oné given
here is very economical, if the observations are not correlated

vl PO: P v v: P, V.
82 = J = J J J (9)
0,] tr(vi PO, P) tr(vi Pj)

It only needs the diagonal elements of the matrix Q,,, thus only a small
part of the inversed normal equation matrix has to be computed. The other
estimators offer the variance of the variance factors for a rough evalua-
tion. As the probability distribution of the estimators is not known (cf.
introduction) we will concentrate on the analysis of the errors in the
functional model.
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L, Statistical tests

The evaluation of the functional model usually is done in a hierarchical
way. The well known F-test on the global variance factor 63 gives very poor
information as all types of model errors accumulate in 6§. Testing the al-
ternative hypotheses is split into a global test, examining all parameters

or gross errors together and a single test for localization.

41 Global test

The global test uses the test statistic
B A 2 o 1 - 1 2 * 12 2
T=35 sts/co or T=v'pPH (H PQVVPH) H PV/OO with Trnyx'2(rg,82).

(10)
They can be obtained by an adjustment in steps, starting with the extended
model eq.(6) (cf. Pelzer,1977) and introducing the null hypothesis
Ho: s = o as a condition in a second step. Testing of T is the same as
testing the variance factor of the second step. In both cases T is indepen-
dant of the chosen generalized inverse and follows a noncentral x2-distri-
bution with rg degrees of freedom and non-centrality parameter §2(s),
where rg is the rank of the matrix to be inverted and

2

o ~ 2 2 _ = 1 = 2
8°(s) =5' 052 5 /o, or 8 (s) =s' H' P o, PHS / o (11)

Ss
If one does not want to use a given value 0% for the variance factor one
can also take the test statistic
T/r
S : 2
R = with R~ F'(r_, r-r_, &%)
s

., 89, (12)
(QO - TYr = rs)

which follows a non-central F-distribution. Qo = v' P v is the weighted sum
of the residuals from the original model eq.(1) including the systematic or
gross errors and r is the redundancy of this adjustment.

If 62 =0,i. e. if the null-hypothesis Hy; 15 true, the test statistics
follow a central x2- or F-distribution. H is rejected, if the statistics
exceed the critical values Xz(a, rS) or F?u, Fan r-rs) depending on the
significance level 71-a.

L.2 Single test

For the localization of the error sources one specializes Hy, e. g. by
assuming only one parameter, gross errors which influence one single ob-
servation each or a single gross error. This leads to well known single
tests as the t-test, the test of Stefanovic (1978) or the "data-snooping'
of Baarda (1967) resp.. Each of_ these tests leads to mutually dependant
test statistics, if it is used for the check of several alternativ hypo-
theses simultaneously.

5. Sensitivity of tests

If the tests do not indicate a significant error in the functional model,
there may still remain errors undetected by the test. To get an idea about
the sensitivity of the tests one can ask for lower bounds Vge of the
errors Ve, which can just be detected with a given probability By. These
errors lead to a lower bound 63 = Sg(a, Bo) of the non-centrality parameter
dependant in addition to By on the significance level 1-0.q and 8 are
assumed to be given, thus 8g is fixed. 2
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Instead of Ve we analyse the parameters Vs. From eq.(11) we obtain a rela-
tion for the lower bounds Vgs

= ! ) = ] I
60 \/Vos Ors Vs / o, or r‘so v vos H' ' PQ PHUVs / a, (13)
which desribes an ellipsoid like figure. Parameters within this figure can
not be detected by the test with a probability greater than 8/ [cF.
F6rstner, 1976, v. Mierlo, 1977, Pelzer, 1980). The standardized length
§5(s) of the vector Vge or Vs is

] =/ 1 = (T - =
60(5) = Voe P Voe / o, /@os H' P H Vs / o, /Vos o_ Vs / o
in which 0cg = H' P H is the weight matrix of those paramters s, if the

vector x is fixed. Dividing by eq.(13) we obtain

s' H' PH s
or §'(s) = 6 . (14)
(o] (0] 1 1
s'H' PO PHs
vV

With 55(5) we get a practical formula for the lower bound
= ° o !
Vos =s -0, SO(S) (15)

of the parameters s. For the test of the additional parameters eq.(15)
reduces to

Vge =a woy » i, f ¥ 8 Ozz s (15a)
The lower bounds depend on 1. the direction of the assumed error (s), 2.
the precision (os), 3. the statistical parameters a and B85 (8o) and 4. the
geometry (ng or Oyy)- In eq.(15) the lower bound Vos is split into a vec-
tor part ( §7) and a scalar part (V,(s) = o5 8i(s), 1. e. Vgs =5 Y (s)).
| f the vector s is standardized to 1 the scalar part describes the ellipso-
id Tike figure via polar coordinates.

Eq.(14) and (15) show that the sensitivity of the tests is the greater (§!
small) the smaller the variance of the parameters after the adjustment or
the greater the variance of the residuals, i. e. the greater the redundan-

cy.

I f we specialize and assume only one parameter,we obtain the measure for
the determinability Vos = 85 oz of the parameter, which is proportional to
its standard error a posteriory (cf. F&rstner, 1980, Pelzer, 1980). If we
assume only one gross error we obtain the measure for the controllability
of the observation concerned 7,5li= oy. 60//FT, in which the redundancy
number ri = (Oyy P)ii is the contribution of the observation 1; to the
total redundancy (Fdrstner, 1979). In both cases S§,is easy to be computed:
We obtain for the test with T &, = ¢'10—a/2}+ ¢~ 1(1-Bo) with the cumulative
normal distribution ¢. E. g. a = 0.1 % and B, = 80 % leads to 6, = 4.2.

. e. parameters less than 4.0~ can not be detected by the test with a

probability greater than 80 %.

6. Reliability of result

The reliability of the result can be described by the influence of non de-
tectable errors in the mathematical model on the coordinates. Non detecta-
ble systematic or gross errors Vge = H Vs lead to a deformation Vok(s) of
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the coordinates

vok(s) = c'p Voe(s), C=(-8 B prB) 18 P)cC. (16)

Uk
This deformation vector is very illustrative, but should be calculated for
all possible directions of s, which is impossible. Therefore we only use

the standardized length &,(s) of this vector (similarly to the sensitivity
value 88). It is

Eé(s) = /Ebkj(s) O 1c Vok(s) / %

Dividing by eq.(13) we obtain

s'H' pCc' Q, CPHSs _
5 (s) =5, x or B (s) = 8
s' Qa2 s s' H' P o, PHS
(17)

§o(s) also describes an ellipsoid like figur which directly can compared
with 65(s) and shows, how much an error Vos influences the result depen-
dant on the direction s. In order to get a more practical formula also in
this case, we consider the influence YV f(s) of Vgs on a linear ( or linea-
rized) function f = g'k of the coordinates. By using Cauchy-Schwarz's in-
equality it can be shown that this influence

s' H' p C! Qi CPHSs

Vof(s) f_cf . Eé(s) (18)

is less than the §5-fold standard deviationofof the function.

| f we specialize and assume only a single gross error we obtain 6o i =

8o Yuk;/ri, the measure for the (external) reliability, i. e. the maximum
influence of a non detectable gross error onto the coordinates (Baarda, 1976
ugj is the contribution of the observation 1; to the determination of the
unknown coordinates, cf. F&rstner, 1979).

7. Discussion

The extension of the reliability theory towards multidimensional tests
gives answer to several practical and theoretical questions.

7.1 It is possible to test all kinds of gross errors, which can be
formulated as errors in the (linear) functional model. It includes
nearly all types of gross errors occuring in photogrammetric blocks,
especially pointing errors, errors of point transfer, misidentification
of groups of points, exchange of points etc..

This is valid, as long as the gross errors are not too large, because

the tests are developped within a linear functional model. In practice
this is a drawback, as very large errors have to be found by other means,
e.g. by rough checks of the image coordinates, of the connections between
the images or models, or by checks during the calculation of the
approximate values. Special complicated errors as a wrong coordinate
system will cause trouhle in any case.

Nevertheless, the theory gives an objective indication when to stop the
error detection process.
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7.2 The evaluation of the systematic errors and of their influence on the
result can be made transparent. There are three criteria: the significance
and the determinability of the parameters and the reliability of the
coordinates with respect to non determinable parameters. All three have a
right on their own. (cf. Ackermann (1980)):

- Significance tests can be used to check whether the presumed systematic
errors are inherent in the data. The parameters will have a physical
meaning in this case.

- The check on determinability (&' (s), eq. (14) can be used to select
parameters out of a given set in order to gain a stable solution. The
parameters may have a physical meaning or not in this case.

- The check on reliability (& (s), eq. (17)) can be used for the same
purpose. Especially, if theoparameters are not supposed to have a
physical meaning, this check leads to the best result (as far as the
selection is concerned), because the influence of non determinable para-
meters on the coordiantes is bounded.

In all three cases the evaluation is possible for single parameters or
groups of parameters. This is advisable, if the parameters are highly
correlated, but also if the groups are rather large (>10) and one has
to expect moderate correlations (about perfect correlation, see below).

The single test for localization should be linked to the global test

e.g. by choosing the significance level in a way that the corresponding
sensitivity of the tests is equal, i.e. by fixing the lower bound §§ for
the non centrality parameter and the power By of the test (cf.Baarda,1968).

753 The criteria of determinability and of reliability can be used for
an optimization of the block geometry, as they only depend on the mathe-
matical model, i.e. the geometry, but not on the observed values. Here one

will be interested in those systematic errors, which can be determinedmost
weakly or have the highest influence on the result, if they stay undetec-
ted, in order to strengthen the block. This means that one has to find

the vector s which leads to the highest values &' (s) or éo(s) . The
solution can be obtained by solving e.g. §8'5(s)»max, which is equivalent
to finding the largest eigen value A=(8'_/85)2 injos5i-0ssl = O and
determining the corresponding eigenvector. (This procedure also can be
used in deformation analysis).

7.4 As systematic and gross errors allow a joint treatment, a joint
testing procedure is advisable. It has the advantage that both types of
errors can clearly be identified.

If the geometry does not allow a distinction between systematic and gross
errors, it is indicated by identical test statistics T or R resp.. This

is important, especially in the case of poor control, where gross errors
in control points can pretend systematic errors in the photogrammetric
images. In this case the parameters and the residuals are perfectly corre-
lated.

The check of the observations in the original model allows to test those
observations,which in the extended model would be not controllable.

O0f course a refined error detection on the basis of the extended model
eq. (6) is necessary as the systematic errors are in the magnitude of
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small gross errors (ca. 10 um).

7.5 The test statistics T and R are independent of the used generalized
inverse. This is the reason why perfect correlation of parameters and
residuals leads to the same test statistic.

It also justifies the practical procedure that one of two parameters,
which are perfectly correlated, or a parameter, which is determined by

a single observation has to be eliminated. |f the solution is stabilized
by additional observations for the parameter values, perfect or very high
correlation of parameters with other unknowns (not residuals) will have
not to be feared, as the solution cannot tend to a wrong result.

The criteria are valid for arbitrary weight matrix. Thus also correlated
observations can be tested. This implies that the test proposed by
Stefanovic (1978) is not restricted to uncorrelated observations or groups
of observations.

7.6 The evaluation of the chosen weights is not possible to such an
extent as the evaluation of the functional model. As the error detection
procedures sensitively react on errors in weights, they should at least
be checked. Of course, for single observations a distinction between a
gross error and an error in weight is not possible. Thus one may prefer
diminishing the weight rather than eliminating an observation if the
estimated error is small and the change of weight can be justified e.qg.
by the image quality.

7.7 Though computer assisted evaluation can be driven rather far there
are still several problems to solve.

- Strategies for joint gross error detection and perception of systematic
errors have to be worked out. A rigorous test on several (e.g. >10)
errors is to costly and the mutual influence of both error types has
to be taken into consideration. Special attention should therfore be
given to preadjustment error detection (cf. Molenaar and Bouloucos,
1978) and also to sequential testing procedures with respect to the
increasing use of analytic plotters.

- Most gross errors only have a locally limited influence. The inequality
eq. (17), which defines the reliability of the coordinates, contains
the standard error of an arbitrary function of the coordinates. This
might be very large though the real influence is low, e.g. because the
observation and the function concerned are in different parts of the
block. A better approximation than eq. (17) is desirable. This would
be a closer link between reliability and precision.

- The evaluation of the precision itself (cf. Baarda, 1973) should be
made operational, possibly with approximations, in order to be able
to guarantee the reliability of the result.

- An extension of the theory towards an evaluation of the stochastical
model would be useful in order to gain complete information about the
acceptability of the block adjustment results on the basis of the
chosen model.
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